Team Eindhoven Win Bridgestone World Solar Challenge Michelin Cruise Class [VIDEO]

The Dutch have dominated this year’s 2013 Bridgestone World Solar Challenge. Having already won the elite Schneider Electric Challenger Class title when team Nuon crossed the line first on Thursday, Team Eindhoven made it two from two winning the Michelin Cruiser Class category announced at the Awards Ceremony in Adelaide on Sunday night.

With a score of 97.5% to Eindhoven it was perhaps closer than the Dutch had predicted, with Germany’s Hochschule Bochum team a close second on 93.9%, in turn just beating Australia’s UNSW Sunswift team, who scored 92.3% taking third place.

The Michelin Cruiser class was judged on the key criteria of solar kilometres travelled, passenger kilometres, speed, energy efficiency, and a subjective element of design and practicality.

Of the eight Cruisers built especially for the Australian event, four completed the 3020 kilometres on full solar power, the University of Minnesota from the USA joining the ranks with the Dutch, German and Australian teams, taking out fourth place with 79.2%.

Each of the top teams had differing strategic approaches to the contest. Eindhoven being a four seater car easily accounted for the most passenger kilometres; Bochum were the most energy efficient, and UNSW Sunswift were the fastest to the finish line.

Final judging occurred on Saturday afternoon with the expert panel assessing characteristics such as: ease of access, comfort, controls, features, style, ease of charging, overall desirability, road registration, parking and cargo space. Judges put the cars through their paces on the finish line. Teams were tested for their parking skills, their ability to load the trunk with numerous suitcases and the ultimate cargo test – could the Aussie esky also be stowed the right way up in the trunk?

The judging panel spent hours deliberating final scores with the topl three cruisers all shining in their own right. Team Bochum’s Powercore Suncruiser scored high on accessibility and desirability and Sunswift’s ‘eVe’ was the most stylish. In the end it came down to just five points between the three top teams with the world’s first four seater solar family car , ‘Stella’ taking the honours.

The remaining four cruisers completed the Challenge with a combination of solar kilometres and trailer kilometres: Goko High School from Japan (2288 km); Apollo Taiwan (1558); Australia’s TAFE SA (1469) and University of Calgary (719).

The Bridgestone World Solar Challenge started October 6th in Darwin and finished 3,000 km later on Sunday 13th October in Adelaide.

Disclosure: EV News has been engaged by the South Australian Motor Sport Board to help promote the World Solar Challenge 2013.

Blog, Updated at: 10:47 PM

Top Teams Nuon and Tokai Race to World Solar Challenge Finish [VIDEO]

A familiar scenario is being played out between two champion teams in the 2013 Bridgestone World Solar Challenge. After nearly 2,800 kilometres just 20 minutes separates the two leading cars. It is almost a repeat performance of 2011 except on this occasion the order is reversed, with the Netherlands Nuon Solar team leading Team Tokai from Japan.

The flying Dutch team have maintained an average speed of around 93 kilometres an hour accelerating at some points today up to 113 km but the Japanese matched their pace, refusing to let the gap between the two teams widen. Unless the Japanese team has something more in reserve, Nuon in their solar car ‘Nuna 7’ look poised to take back the title they lost to Team Tokai in 2009 and again in 2011.

Both teams are camped south of Port Pirrie and are due to make their final run to the official finish line in Hindmarsh Square Adelaide, arriving mid-morning tomorrow.

Netherlands Team Twente with their ‘Red Engine’ is in third place some 240 kilometres behind the leaders with Stanford University from the USA hot on their heels in 4th just nine kilometres behind, 49 kilometres south of Woomera. Belgium’s Punch Powertrain is in 5th with Solar Energy Racers about 25 kilometres behind in 6th. Still flying the flag for Australia, team Arrow holds 7th position. Other teams still under solar power include Onda Solare from Italy, Blue Sky Solar from Canada and Australia’s UWS Solar team in SolAce.

Strong wind gusts today played havoc with some of the teams including the American solar champions Michigan, who were bumped to the side of the road coming into the Coober Pedy Control Stop. They are now frantically working on their solar car Generation hoping to resume tomorrow morning.

All Michelin Cruisers are now in Coober Pedy for their last mandatory overnight stop before they resume tomorrow morning for the final stage. It will be a battle between Team Eindhoven from the Netherlands in their four seater Stella; the German Hochschule Bochum’s Powercore SunCruiser and Australia’s UNSW Sunswift Team, in their solar sports car ‘eVe’ who flew into Coober Pedy today hours ahead of the field. Final judging of the Cruiser class will be held in Adelaide on Saturday, taking into account design, practicality and person kilometres travelled which could put Eindhoven in a strong position as they have the capacity to carry four passengers.

In the GoPro Adventure Class Australia’s Aurora arrived into Coober Pedy, their final overhead stop, ahead of the other contender still running on solar power, team Antakari from Chile.

The leaders are expected to reach ‘finish of timing’ in Angle Vale tomorrow morning before proceeding to the Official Finish Line at Hindmarsh Square. Even if a team is first to Angle Vale they must still reach the official finish line to claim victory.

The Bridgestone World Solar Challenge started October 6th in Darwin and finishes 3,000 km later tomorrow in Adelaide.

Disclosure: EV News has been engaged by the South Australian Motor Sport Board to help promote the World Solar Challenge 2013.

Blog, Updated at: 4:49 AM

Nuna 7 Takes Early Lead in 2013 Bridgestone World Solar Challenge [VIDEO]

Team Nuon from the Netherlands, in their solar car Nuna 7, took an early lead in the Schneider Electric Challenger Class of the 2013 Bridgestone World Solar Challenge and at the end of day one are approximately 633 kilometres south of Darwin. Just 32 kilometres behind at the Dunmarra Control Stop there is one minute separating second placed Team Twente in ‘Red Engine’ also from the Netherlands and the 2011 Champion team Tokai from Japan, who as predicted, made up time early from 20th position on the starting grid.

USA solar champions, team Michigan, are in fourth place approximately 10 kilometres out of Dunmarra with Australia’s Team Arrow showing they can mix it with the elite international field just behind in fifth place.

In the Michelin Cruiser Class team Bochum from Germany are in first place approximately sixty kilometres north of Dunmarra, with team Eindhoven from the Netherlands just five kilometres behind in second place, Minnesota Solar team from the USA in third place and University of NSW Sunswift team in fourth place approximately 100 kilometres north of Dunmarra.

Leading the GoPro Adventure Class was Australia’s team Aurora who have never missed a solar challenge; followed by IVE from Hong Kong and Antakari from Chile.

The Bridgestone World Solar Challenge started today October 6th in Darwin and finishes 3,000 km later on Sunday 13th October in Adelaide.

Disclosure: EV News has been engaged by the South Australian Motor Sport Board to help promote the World Solar Challenge 2013.

Blog, Updated at: 4:56 AM

Underdog Team Scores World Solar Challenge Pole Position [VIDEO]

Qualifying day for the Bridgestone World Solar Challenge at Hidden Valley Raceway didn't follow any script with an underdog team setting the fastest overall time, a Michelin Cruiser Class car coming in second fastest and many of the favorites struggling to set a competitive time at all.

Pole position goes to Australian TeamArrow, a Queensland based team associated with the Queensland University of Technology, who set a lap time 5 seconds clear of the entire field. Second in the Schneider Electric Challenger Class is Japanese team Kogakuin University Solar Vehicle Project with a close third place going to the Stanford team with Luminos.

Of the favorite teams, University of Michigan are fifth in the starting order with Nuna7 starting lucky 13th having set a time 33 seconds off the pace while Tokai Challenger starts 20th after spinning twice at the final corner leading onto the main straight. The 'official' reason given is sand on the track although only one other car spun at that corner, the Hochschule Bochum SolarCar Team who still qualified third in the Michelin Cruiser Class.

Of all the asymmetric cars (with the driver positioned in a side pod of the car) in the 2013 Bridgestone World Solar Challenge, Tokai Challenger is the only car with rear wheel steering which may have contributed to the car spinning each time it negotiated the final turn at Hidden Valley. We don't expect there are many hairpin corners along the 3,000 km route from Darwin to Adelaide so this may not be a good indicationn of likely race performance.

On pole for the Michelin Cruiser class, and second fastest time overall is Solar Team Eindhoven with their 4 seater Stella. University of Minnesota starts second with final turn spinners Hochschule Bochum SolarCar Team starting third.

UNSW Solar Racing Team with their Sunswift eVe two seater start forth with a qualifying time 26 seconds off the pace following some drama on their first attempt at a flying lap. Sunswift's eVe literally limped around the Hidden Valley track on it's first warm up lap and came straight back into the pits barely moving under it's own power. The problem turned out to be a seized front brake caliper that was only diagnosed after the team were forced to set a time before eVe could be repaired. The team has also been having persistent motor controller issues.

Pole position for the GoPro Adventure class, which includes quite a few older generation three wheeled solar cars that no longer qualify for the outright class, was set by SIKAT Solar Philippines with SIKAT II followed by Aurora Evolution and Team Solaris from the Dokuz Eylül University in Turkey.

This year’s Bridgestone World Solar Challenge is held from 6th – 13th October. If you can’t make it to Darwin or Adelaide, you can follow the race on Twitter via @tsport100 or @WorldSolarChlg.

Disclosure: This post is sponsored by Bridgestone World Solar Challenge. Words and thoughts are entirely my own.

Full results: Bridestone World Solar Challenge

Blog, Updated at: 1:41 AM

Top Gun Scrutineering for the Bridgestone World Solar Challenge [VIDEO]

The Clipsal and Schneider Electric Challenger Class single seat aerodynamic masterpieces were presented to Scrutineering on day 2 of the Bridgestone World Solar Challenge at the Royal Darwin Showgrounds.

This year’s Bridgestone World Solar Challenge is held from 6th – 13th October. If you can’t make it to Darwin or Adelaide, you can follow the race on Twitter via @tsport100 or @WorldSolarChlg.

Disclosure: This post is sponsored by Bridgestone World Solar Challenge. Words and thoughts are entirely my own.

Blog, Updated at: 6:53 AM

World's Most Efficient EVs Travel 3,000 km without Plugging-In

This time next week the world's most energy efficient electric cars will be hitting speeds of up to 130 km/h (81 mph) as they race 3,000 km (1,865 Miles) coast to coast across the Australian Outback contesting the Bridgestone World Solar Challenge.

The outright contenders for line honours will come from the big budget single seater aerodynamic vehicles of the Schneider Electric Challenger Class. The only external energy source allowed during the race is solar irradiation received by a maximum of either 3 square meters of high-efficiency (22.5%+), triple-junction gallium arsenide (GaAs) solar cells or 6 square meters of silicon based solar cells with less than 22.5% efficiency. The solar array is paired with a maximum on-board energy storage capacity of 5 kWh to assist with energy use strategy, hills, clouds or extra acceleration for overtaking.

To have a good chance to win each car has to 1) Collect as much solar energy as possible and 2) Use as little energy as possible. This means special attention needs to be applied to the efficiency of transferring electrical energy to the wheels and minimising friction from aerodynamic drag and rolling resistance which is affected by vehicle weight amongst other things.

To achieve the electrical efficiency goal, every Bridgestone World Solar Challenge winner since at least 1999 has used a direct drive in-wheel motor to propel the vehicle. Direct drive eliminates mechanical transmission losses that can be as much as 20%.

Solar cars use very low rolling resistance tires that are specially designed for this race with a rolling resistance ten times less than an average road car. With the rolling resistance of a cars tyres accounting for roughly 20% of all energy used, tyres can account for up to one in every five tanks of fuel in a regular road car. Vehicle weight is also kept extremely low with extensive use of carbon fiber, again to minimise rolling resistance.

In 2011 Tokai Challenger won with an average speed of 91.54 km/h (56 mph). With such high average speeds combined with the physics - air resistance being proportional to the square of speed - aerodynamic drag is the main source of losses on a solar race car. Much design effort is invested in CFD computer simulation, scale and full size wind tunnel testing. The best solar race cars achieve a drag coefficient as low as 0.07 (Nuna 3 – which holds the record for highest average winning speed @ 102.8 km/h) where a road car ranges from 0.24 (Tesla Model S) to 0.35 (Toyota Land Cruiser).

It is the chase of maximum aerodynamic efficiency that has lead to the race winning dominance of “coffee table” type vehicle designs which brings up the question of how practical can a solar-powered vehicles be? The 2013 Bridgestone World Solar Challenge sees the introduction of the Michelin Cruiser Class which is not focused on speed but practicality, with the ultimate goal of entrants being able to meet the requirements for road registration. Cruiser Class cars must seat a minimum of two people and will be allowed over-night battery charging at select locations.

While the Michelin cruiser class aligns solar race car design more closely with road car requirements, if the limitations of having the solar cells on the vehicle itself are removed, powering a regular road going EV with solar power is an affordable reality today!

Tesla Motors recently launched a network of solar powered superchargers capable of charging their Model S to 320 km of range in 30 minutes. Even a modest 1.5 kw residential roof-top PV solar system generates enough energy to power a commuter EV like a Nissan Leaf for more than average annual mileage. In fact, displacing the cost of petrol instead of grid power will reduce the break even time on a roof-top PV installation from years to months.

This year’s Bridgestone World Solar Challenge is held from 6th – 13th October. If you can’t make it to Darwin or Adelaide, you can follow the race on Twitter via @tsport100 or @WorldSolarChlg.

Disclosure: This post is sponsored by Bridgestone World Solar Challenge. Words and thoughts are entirely my own.

Blog, Updated at: 8:33 PM

World’s first solar powered family car set for stellar performance [VIDEO]

With just 17 days to go before 43 teams from 24 countries take to the start line in Darwin on October 6 to contest the Bridgestone World Solar Challenge 3,000 kilometre quest across Australia; one team is already putting its revolutionary 4 seater solar family car, Stella, through its paces in Darwin.

First time entrants in the inaugural Michelin Cruiser Class, Solar Team Eindhoven of Eindhoven University of Technology from the Netherlands are hoping their pre-race road testing in Darwin will pay dividends across the Aussie outback. Purpose built for this year’s event ‘Stella’ is the first ‘energy-positive car’ with room for four people, a trunk, intuitive steering and a range of 600 kilometers.

Competition in the Michelin Cruiser Class is not about finishing first across the line. It is about taking the technology to the mainstream and developing a car for the future Competitors will be judged on energy use and efficiency; how many people they’ve carried and over what distance and the potential of the design and practicality to appeal to the mainstream motoring market. ‘Stella’ will have her work cut out for her with competition from the German Bochum team, whose former car, the ‘BoCruiser’ inspired the category; Australian teams from Uni NSW and TAFE SA; and teams from Japan, Taiwan, USA, Canada and New Zealand.

Teams in the Elite Challenger Class are also well prepared. An unprecedented number of crews arrived in Australia early including America’s most successful solar team, University of Michigan who have yet to post a win here. They’ve been venturing out on test runs, and have even organised a ‘mock race’ to simulate the real Challenge in every way possible.

The Dutch Nuon Solar team from Delft University, believes their car, Nuna 7 can deliver their fifth World Solar Challenge from seven attempts. Until recent challenges they dominated, winning in 2001, 2003, 2005 & 2007. Their excellent record was thwarted in 2009 and again in 2011 by the impressively slick Japanese Tokai University team. Team Tokai are here to win and will not give up the title without a fight. Others to watch include Team Twente with their car, Red Engine, and Stanford University, who hope their car, Luminos, will live up to its name and be a leading light.

This year’s Bridgestone World Solar Challenge is held from 6th – 13th October. If you can’t make it to Darwin or Adelaide, you can follow the race on Twitter via @tsport100 or @WorldSolarChlg.

Disclosure: This post is sponsored by Bridgestone World Solar Challenge.

Blog, Updated at: 10:32 PM

Solar Cars improve the breed

A famous quote from Soichiro Honda, the legendary founder of Honda Motor Company, says “Racing improves the breed”. There's no doubt many Formula One teams have used that phrase to imply a legitimate link between innovations made in racing that eventually benefit us all as the technology from top-level motorsport filters down into road cars, although it would be hard to convince anyone of a practical use for an off-throttle blown diffuser in a family hatch back.

Likewise solar racing cars have made significant contributions that have lead to today's current crop of mass produced Plug-In electric cars. It all started with the winning vehicle of the very first World Solar Challenge in 1987. GM's Sunraycer was designed by Hughes Aerospace, (the company originally founded by Howard Hughes) at the time a division of General Motors, in collaboration with a smaller aerospace company called AeroVironment.

More than a dozen Caltech graduates participated in Sunraycer programs at AeroVironment, the most deeply involved was Alan Cocconi who was responsible for the power electronics systems. This included everything from motor controller through battery management to telemetry.

The Cocconi designed MOSFET based three phase AC motor drive inverter ran a 92% efficient 10 hp (peak) motor that drove the left rear wheel of Sunraycer via a cogged belt.

Sunraycer won Pole with a top speed of 109 km/h and lead the 24 car field from start to finish covering the 3,005 km route at an average speed of 66.9 km/h (41.6 mph), 50% faster than 2nd place.

Following the World Solar Challenge success, in early 1988 GM insiders proposed the idea of making a very efficient EV with the knowledge gained from Sunraycer but to make it an affordable car with decent range and performance equal to a petrol powered car. Work soon begins at AeroVironment on the 'Impact' based around a 15 kWh Lead Acid battery pack, Al Cocconi again responsible for power electronics design.

The Impact EV concept car was launched at the LA Auto Show in Jan 1990 and the car was so well received that by April GM announced the car would go into production. The Alan Cocconi designed motor controller for the Impact, a direct descendant of that used in Sunraycer, was refined by Hughes Electronics and went into the GM EV1 when production started in 1996.

Based on his work to date, in 1992 Alan Cocconi founded AC Propusion to produce electric vehicle drive systems featuring high performance, high efficiency induction motors and integrated high power battery charging. The original test bed was a not too glamorous Honda Civic but once the powertrain design was debugged, a Piontek Sportech kit car chassis, originally designed around a Suzuki GSX-R motorbike engine, was converted into an EV sports car called t-zero.

Launched in 1997, the 1040 kg t-zero, powered by 28x lead acid batteries, started to make headlines with it's 0 to 100 km/h in 4 seconds levels of performance. By 2003 the car had been upgraded with 6,800x 18650 Li-ion cells giving a single charge range of 480 km, a 320 kg reduction in kerb weight and 0-100 km/h times reduced to a Supercar beating 3.2 seconds.

If some of these specs sound similar to the Tesla Roadster, that's because the Roadster was developed by Tesla Motors to mass-produce AC propulsions t-zero, the first EV to demonstrate the performance and range potential of lithium ion batteries and the car that can legitimately be credited with inspiring today's mass produced plug-In electrics from GM, Nissan, Mitsubishi etc. Tesla Motors was founded to commercialise Alan Cocconi's work and the Tesla Model S still uses technology licensed from AC Propulsion.

Today's solar racers are still blazing a trail years ahead of the automotive industry, witness BMWs i3 Electric car, the first all carbon fibre production car. Every WSC winner since 1999 has achieved up to 98% drive train energy efficiency by using direct drive in-wheel motors (road car in-wheel motors are currently being developed) and surely it won't be much longer before the 12.5% of Australian homes that have roof-top PV systems installed realise they already have the infrastructure in place to solar power a plug-in electric vehicle for their daily commute?

This year’s Bridgestone World Solar Challenge is held from 6th – 13th October. If you can’t make it to Darwin or Adelaide, you can follow the race on Twitter via @tsport100 or @WorldSolarChlg.

Disclosure: This post is sponsored by Bridgestone World Solar Challenge. Words and thoughts are entirely my own.

Blog, Updated at: 12:15 AM

Panasonic Announce Tokai University Solar Car Team Sponsorship

Panasonic Corporation today announced that it has agreed to provide technical support to Tokai University's solar car team, which will compete in the 2013 World Solar Challenge (WSC 2013), one of the world's biggest races for solar cars, to be held from October 6 to 13 in Australia. Under the sponsorship agreement, Panasonic will provide the Japanese university team with its HIT(R) solar cells which boast the industry's top-class electricity output as well as its high-capacity lithium-ion batteries.

The WSC, which started in 1987 and became a biennial event in 1999, is a time-based competition over a distance of 3,021km from Darwin in the north down to Adelaide in the south. Teams from around the world, including universities and corporations, participate in the race in cars powered solely by sunlight.

The Tokai University team has an impressive track record in solar car racing. The team won the previous WSC races held in 2009 and 2011, and is now looking to make a hat trick in the WSC this year. Last year, the team also won the race in South Africa that was recognized by the Federation Internationale de l'Automobile (FIA) as the world's longest alternative fuel vehicle car race. Panasonic's energy products contributed to the team's victories at these international competitions.

Panasonic's HIT solar cells have a unique hybrid configuration with a crystalline silicon substrate surrounded by ultrathin amorphous silicon layers. Compared to ordinary crystalline silicon-based solar cells, Panasonic's HIT solar cells suffer less degradation of power output at high temperatures, delivering the industry's highest-level energy output per unit of area. This makes Panasonic's HIT solar cells ideal for solar cars competing in races such as the WSC, given that the WSC regulations limit the total area of solar cells installed on the body to up to six square meters and that the cells will be exposed to the scorching Australian sun. The HIT solar modules for the Tokai University team are purpose-built for the solar car race, using the same solar cells - the main component that converts the sunlight into electricity - that are mass-produced for the residential market.

The rechargeable batteries Panasonic is providing are the cylindrical 18650 type (18 mm in diameter x 65 mm in height) high-capacity lithium-ion battery cells which use the company's proprietary nickel-based positive electrode. The high-capacity and lightweight battery cells store excess power generated by the HIT solar cells so that the car is able to continue running even on overcast days.

The Bridgestone World Solar Challenge starts on October 6th in Darwin and finishes 3,000 km later on Sunday 13th October in Adelaide.

Disclosure: EV News has been engaged by the South Australian Motor Sport Board to help promote the World Solar Challenge 2013.

Blog, Updated at: 9:18 PM

Bridgestone Sponsors World Solar Challenge 2013

Bridgestone will be the title sponsor of the World Solar Challenge 2013, which will be held in Australia October 6-13.

Dubbed “The Bridgestone World Solar Challenge 2013,” the event will see a record 45 teams from 26 countries compete in a 3,000 km cross-country race using only solar energy to power the vehicles.

The event will feature three separate classes, Adventure Class, which will showcase cars built for previous events; Cruiser Class, which will be judged by design practicality, and Challenger Class, which will compete for the title of the world’s most efficient solar car.

The Bridgestone World Solar Challenge starts on October 6th in Darwin and finishes 3,000 km later on Sunday 13th October in Adelaide.

Disclosure: EV News has been engaged by the South Australian Motor Sport Board to help promote the World Solar Challenge 2013.

Blog, Updated at: 9:14 PM

UNSW Sunswift launch 140 km/h “eVe” Cruiser Class Solar Racecar

UNSW Solar Racing Team Sunswift revealed their solar racing car eVe at the University of New South Wales last Friday.

The latest addition to the Sunswift family is designed for the new Cruiser class, which consists of four-wheeled vehicles that must meet regulations for normal roads-worthy vehicles in the country they come from. They’re also required to have both a driver and a passenger.

The new Sunswift racer is RWD and powered by 2x 1.8 Kw (10 Kw Peak) Australian developed direct drive CSIRO wheel motors, now manufactured under license by Marand Precision Engineering, giving a top speed of 140 km/h. 15 kWh worth of Panasonic cylindrical Lithium Ion batteries, weighing only 63 Kg, output 140 volts and give eVe a single charge highway speed cruising range of over 500 km, as much as the 85 kWh Tesla Model S!

This incredible range is achieved by a combination of light weight (about 300kg) carbon fiber monocoque construction, extremely low drag coefficient, 98.3% energy efficient direct drive wheel motors and solar charging. Battery charge comes care of continuous top-up from the PV cells, with opportunities for major fills from the grid at points in Tennant Creek, Alice and Coober Pedy.

eVe has a 1800 x 4500 mm footprint (larger than a Tesla Roadster) with four square metres (WSC rules allow up to six square metres) of Mono-crystalline silicon cells provided by SunPower.

Although the new car has twice the frontal area of its blade-like predecessor, Sunswift has achieved a similar drag coefficient. It’s managed this partly by the use of a smaller PV cell area, and partly through a unique high-set “tunnel” underside design, giving the car the look of a catamaran.

For the carbon fibre bodywork, Core Builders Composites in New Zealand, best known for its work on maxi-yachts of the calibre of Oracle’s America's Cup ocean racers, offered the team a sponsorship deal. The result is a structure of immense strength, with the only metal component a steel roll bar, there for compliance with FIA motorsport standards.

The team is looking towards a hi-powered version of the car using motors on all four wheels although to do so the team say the battery would need a significant upgrade.

The Bridgestone World Solar Challenge starts on October 6th in Darwin and finishes 3,000 km later on Sunday 13th October in Adelaide.

Disclosure: Post is sponsored by Bridgestone World Solar Challenge. Words and thoughts are entirely my own.

Blog, Updated at: 4:55 AM
Copyright © 2014. Interior Designs - All Rights Reserved
Template by seocips.com
Template Published by template.areasatu.com
Powered by A1
Back to top